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Abstract
The usual dispersionless limit of the KP hierarchy does not work in the
case where the dependent variable has values in a noncommutative (e.g.
matrix) algebra. Passing over to the potential KP hierarchy, there is a
corresponding scaling limit in the noncommutative case, which turns out
to be the hierarchy of a ‘pseudodual chiral model’ in 2 + 1 dimensions
(‘pseudodual’ to a hierarchy extending Ward’s (modified) integrable chiral
model). Applying the scaling procedure to a method generating exact solutions
of a matrix (potential) KP hierarchy from solutions of a matrix linear heat
hierarchy, leads to a corresponding method that generates exact solutions of
the matrix dispersionless potential KP hierarchy, i.e. the pseudodual chiral
model hierarchy. We use this result to construct classes of exact solutions
of the su(m) pseudodual chiral model in 2 + 1 dimensions, including various
multiple lump configurations.

PACS numbers: 02.30.Ik, 05.45.Yv
Mathematics Subject Classification: 35Q58, 37K10, 35Q51

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Expressing the scalar KP hierarchy with the dependent variable u(t1, t2, . . .) in terms of new
evolution variables Tn = εtn with a parameter ε, the limit ε → 0 (keeping Tn fixed) leads to
the so-called dispersionless KP hierarchy (see [1–23], for example). The same limit does not
work, however, for the KP hierarchy with the dependent variable in a noncommutative (e.g.
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matrix) algebra. In fact, different scaling limits of the matrix KP equation have already been
explored in [24], where the multiscale expansion method has been used to relate different
integrable systems.

In the present work, we formulate a dispersionless limit of the ‘noncommutative’ potential
KP (ncpKP) hierarchy with dependent variable φ, where u = φt1 . It turns out to be the
hierarchy associated with a ‘pseudodual chiral model’ (pdCM) in 2 + 1 dimensions, a well-
known reduction of the self-dual Yang–Mills equation [25, 26]. Applying the scaling limit
procedure to a method generating exact solutions of a matrix pKP hierarchy from solutions
of a matrix linear heat hierarchy, then results in a method generating solutions of this pdCM
hierarchy.

In section 2 we consider the dispersionless limit of the ncpKP equation. Section 3
generalizes this limit to the whole ncpKP hierarchy, explores some of its properties, and in
particular establishes a pseudoduality relation with a hierarchy that extends Ward’s (modified)
chiral model in 2 + 1 dimensions [27–32]. The latter model has been studied extensively
[33–52] (see also [53–55] for the Ward model in (anti-)de Sitter spacetime and [56–63]
for explorations of a Moyal-deformed version), in particular concerning its (multi-)lump
solutions, which are two-dimensional soliton-like objects. In this respect, its pseudodual
received comparatively little attention. The dependent variables of the two equations are
related by a kind of hetero-Bäcklund transformation. Given a solution of one of the two
equation, this becomes a first-order system of partial differential equations, which determines
a solution of the other equation. The necessary integration is typically difficult to carry
out, however. Hence, although some properties of the pseudodual model can certainly be
inferred from corresponding knowledge of the Ward model, there is no explicit translation of
its solutions. In any case, in this work we present an independent approach to solutions of the
pdCM and moreover to its hierarchy.

In section 4 we derive the abovementioned method to generate exact solutions of the
pdCM hierarchy from the corresponding knowledge of the ncpKP hierarchy. The main result
is independently verified in section 5 and then applied to construct some classes of exact
solutions. This section is actually formulated in such a way that it can be accessed almost
without any knowledge of the previous sections. We concentrate on solutions of the su(m)

pdCM hierarchy and restrict concrete examples to the su(2) case. Some conclusions are
collected in section 6.

2. The dispersionless limit of the noncommutative pKP equation

Let φ(t) with t = (t1, t2, . . .) be a function with values in some matrix space3 A which is
endowed with a product A · B = AQB, where Q is a constant matrix, i.e. independent of t.
We consider the following ncpKP equation,

4φtx − φxxxx − 3φyy = 6 (φxQφx)x − 6[φx, φy]Q, (2.1)

where x = t1, y = t2, t = t3 and

[A,B]Q := AQB − BQA. (2.2)

Let φ now also depend on a parameter ε in such a way that

φ(t, ε) = εa�(T) + O(εa+1) (2.3)

3 The entries will be taken as complex functions of t1, t2, . . . , though large parts of this work also apply to the
case where they are elements of any (possibly noncommutative) associative algebra, for which differentiability with
respect to t1, t2, . . . can be defined.
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with some integer a. Furthermore, we assume that Q has an expansion

Q = Q(0) + εQ(1) + O(ε2). (2.4)

Rewriting the ncpKP equation in terms of the rescaled variables Tn = εtn, dividing the equation
by the maximal power of ε common to all of its summands, and taking the limit ε → 0 while
keeping T1, T2, . . . fixed, should result in an equation that still has linear as well as nonlinear
terms (in �). This fixes the value of a, but we have to distinguish the following two cases.

If the algebra (A, ·) is commutative at ε = 0 with Q(0) �= 0, and hence the commutator
[�X,�Y ]Q(0)

= �XQ(0)�Y − �Y Q(0)�X vanishes, then our requirements lead to a = −1,
and the scaling limit of the pKP equation, divided by ε, is

4�T X − 3�YY = 6 (�XQ(0)�X)X − 6[�X,�Y ]Q(1)
, (2.5)

where X = T1, Y = T2, T = T3. If � is a scalar and Q(0) = 1, the last equation reduces to

4�T X − 3�YY = 6
(
�X

2
)
X
. (2.6)

This is the potential form of the dispersionless limit of the (‘commutative’) scalar KP equation,
which is also known as the Khokhlov–Zabolotskaya equation (see [4] for instance).

If the algebra (A, ·) is noncommutative at ε = 0, we have to set

a = 0, (2.7)

and this choice will be made throughout this work. Then we obtain the following dispersionless
limit of the ncpKP equation (2.1):

4�T X − 3�YY = −6[�X,�Y ]Q(0)
. (2.8)

Up to the modified matrix product and rescalings of the coordinates, this is a well-known
reduction of the self-dual Yang–Mills equation (see [25, 26, 64–68]). With the further
dimensional reduction �X = �T , it becomes the pseudodual chiral model [69–71] (see also
[64, 72–74]). Accordingly, we may call (2.8) a pseudodual chiral model in 2 + 1 dimensions,
in the following abbreviated to pdCM. In fact, as explained in section 3.2, it is ‘pseudodual’
to an integrable (modified) chiral model in 2 + 1 dimensions.

3. The dispersionless limit of the ncpKP hierarchy

A functional representation of the ncpKP hierarchy is given by [75]

(φ − φ−[λ])(λ
−1 − Qφ) − φt1 = θ − θ−[λ], (3.1)

where θ is an arbitrary A-valued function, and (φ−[λ])(t) := φ(t − [λ]) is a Miwa shift with
[λ] = (λ, λ2/2, λ3/3, . . .), λ an indeterminate. Eliminating θ from this equation, we get the
following functional form of the ncpKP hierarchy:(
(φ − φ−[λ])(λ

−1 − Qφ) − φt1

) − (
(φ − φ−[λ])(λ

−1 − Qφ) − φt1

)
−[µ]

= (
(φ − φ−[µ])(µ

−1 − Qφ) − φt1

) − (
(φ − φ−[µ])(µ

−1 − Qφ) − φt1

)
−[λ], (3.2)

where µ is another indeterminate.
If pn, n = 1, 2, . . . , denote the elementary Schur polynomials, then

pn(−∂̃) = − ε

n
∂Tn

+ O(ε2), (3.3)

where ∂̃ = (∂t1 , ∂t2/2, ∂t3/3, . . .), and hence

φ − φ−[λ] = εD(λ)� + O(ε2), (3.4)
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where

D(λ) :=
∑
n�1

λn

n
∂Tn

. (3.5)

In accordance with (2.3), where now a = 0, we shall assume

θ(t, ε) = �(T) + O(ε). (3.6)

Then we obtain

D(λ)(�) (λ−1 − Q(0)�) − �T1 = D(λ)(�). (3.7)

Expanding this in powers of λ, we find

1

n + 1
�Tn+1 − 1

n
�Tn

Q(0)� = 1

n
�Tn

, n = 1, 2 . . . . (3.8)

Elimination of � results in the hierarchy equations
n

(n + 1)
�Tn+1,Tm

− m

(m + 1)
�Tm+1,Tn

= �Tn
Q(0)�Tm

− �Tm
Q(0)�Tn

. (3.9)

Introducing

xn := nTn, n = 1, 2, . . . , (3.10)

this becomes

�xn+1,xm
− �xm+1,xn

= [�xn
,�xm

]Q(0)
, m, n = 1, 2, . . . . (3.11)

For m = 1, n = 2, we recover (2.8).
Expressing Q(0) as

Q(0) = V U † (3.12)

with matrices U,V and the adjoint (complex conjugate and transpose) U † of U, then

ϕ := U †�V (3.13)

(which includes the cases ϕ = Q(0)� and ϕ = �Q(0)) solves

ϕxn+1,xm
− ϕxm+1,xn

= [ϕxn
, ϕxm

], m, n = 1, 2, . . . , (3.14)

if � solves (3.11). The power of this observation lies in the fact that any solution of (3.11)
in some M × N matrix algebra, where Q(0) = V U † with an M × m matrix U and an N × m

matrix V , determines in this way a solution of (3.14) in the m × m matrix algebra. For
example, if we are looking for solutions of (3.14) in the algebra of 2 × 2 matrices, we may
first look for solutions of (3.11) with any M,N � 2 and Q(0) = V U † with M × 2 and N × 2
matrices U and V . In this way (simple) solutions of (3.11) in arbitrarily large matrix algebras
lead to (complicated) solutions of (3.14) in the algebra of 2 × 2 matrices. In particular, this
explains the significance of Q(0) in our previous formulae. In section 5 we will substantiate
this method. The hierarchy (3.14) is consistent with restricting ϕ to take values in any Lie
algebra, e.g. sl(N, R), sl(N, C), u(N) or su(N). If ϕ solves (3.14), then also ϕ + ϕ0, where
ϕ0 is a constant in the respective Lie algebra.

As a consequence of their origin, the hierarchies (3.11) and (3.14) are invariant under the
scaling transformation xn �→ λxn, n = 1, 2, . . . , with any constant λ �= 0.

Remark. If g1, g2 are any two constant invertible matrices with size such that g1�g2 is
defined, then

� �→ g1�g2, Q(0) �→ g−1
2 Q(0)g

−1
1 (3.15)
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leaves (3.11) invariant. If Q(0) is given by (3.12), the latter transformation results from

V �→ g−1
2 V, U �→ (

g
†
1

)−1
U, (3.16)

and ϕ is invariant. More generally, the transformation V �→ g−1
2 V σ,U �→ (

g
†
1

)−1
U(σ †)−1,

with a constant m × m matrix σ , leads to ϕ �→ σ−1ϕσ . This leaves the hierarchy
equations (3.14) invariant.

3.1. Some properties of the first dispersionless hierarchy equation

A Lagrangian for the first equation (m = 1, n = 2)

ϕx1,x3 − ϕx2,x2 = −[ϕx1 , ϕx2 ] (3.17)

of the hierarchy (3.14) is

L = − tr
(
ϕx1ϕx3 − ϕx2

2 − 2
3ϕ[ϕx1 , ϕx2 ]

)
(3.18)

(see also [64, 65]). After passage to the new coordinates x, y, t given by

x1 = 1
2 (t − x), x2 = y, x3 = 1

2 (t + x), (3.19)

equation (3.17) becomes

ϕtt − ϕxx − ϕyy + [ϕt − ϕx, ϕy] = 0, (3.20)

and the Lagrangian takes the form

L = − 1
2 tr

(
ϕt

2 − ϕx
2 − ϕy

2 − 2
3ϕ[ϕt − ϕx, ϕy]

)
= − 1

2 tr
(
ηµν∂µϕ∂νϕ + 2

3ϕvρε
ρµν∂µϕ∂νϕ

)
, (3.21)

where we introduced the components ηµν (with respect to the coordinates (xµ) = (t, x, y)) of
the Minkowski metric in 2+1 dimensions, the totally antisymmetric Levi-Civita pseudo-tensor
with ε012 = 1, and a constant covector vρ with components (1, 1, 0). As a consequence of the
translational invariance of the Lagrangian, the energy–momentum tensor

T µ
ν = tr

(
∂L

∂(∂µϕ)
∂νϕ − δµ

ν L
)

(3.22)

provides us with the conserved densities

T 0
0 = − 1

2 tr
(
ϕ2

t + ϕ2
x + ϕ2

y − 2
3ϕ[ϕx, ϕy]

)
,

T 0
1 = − tr

(
ϕtϕx − 1

3ϕ[ϕx, ϕy]
)
, T 0

2 = − tr(ϕtϕy).
(3.23)

Then also

E = T 0
0 − T 0

1 = − 1
2 tr

[
(ϕt − ϕx)

2 + ϕy
2
]

(3.24)

is a conserved density. For any nonzero anti-Hermitian matrix, the trace of the square of the
matrix is real and negative. Hence E provides us with a non-negative ‘energy’ density in the
case where ϕ takes values in the Lie algebra u(m) of the unitary group.

For any infinitesimal symmetry δϕ = ∂ϕ

∂α
δα (with a parameter α) of the Lagrangian, there

is a conserved current

Jµ := tr

(
∂L

∂(∂µϕ)

∂ϕ

∂α

)
, (3.25)

i.e., ∂µJµ = 0. A symmetry of the above Lagrangian is given by δϕ = [C, ϕ]α with any
constant (anti-Hermitian) matrix C. Hence

J 0
C = −tr

((
[ϕ, ϕt ] + 1

3 (ϕ2ϕy − 2ϕϕyϕ + ϕyϕ
2)

)
C

)
(3.26)

is a conserved density.
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3.2. Relation with Ward’s chiral model in 2 + 1 dimensions

The hierarchy (3.14) is related to the hierarchy of an integrable (modified) chiral model in
2 + 1 dimensions. First we note that (3.14) is the integrability condition of the linear system

Jxn+1 = −Jϕxn
, n = 1, 2, . . . (3.27)

with some invertible J . Rewriting this as

ϕxn
= −J−1Jxn+1 , n = 1, 2, . . . , (3.28)

we find that (3.14) is automatically satisfied and the integrability conditions now take the form(
J−1Jxn+1

)
xm

− (
J−1Jxm+1

)
xn

= 0, m, n = 1, 2, . . . . (3.29)

In conclusion, solutions J of (3.29) are in correspondence with solutions ϕ of (3.14) via (3.28).
This correspondence is of a nonlocal nature. In particular, given a solution ϕ of (3.14), (3.28)
does not directly determine J−1Jx1 . We first have to solve (3.27) for J in order to be able to
calculate this expression.

Equation (3.29) is immediately recognized as the dispersionless limit of the
noncommutative modified KP hierarchy (see equation (4.12) in [76]).

For m = 1 and n = 2, (3.29) reads(
J−1Jx3

)
x1

− (
J−1Jx2

)
x2

= 0. (3.30)

This equation apparently first appeared in [77, 78]. It is a reduction of the self-dual Yang–Mills
equation (see [77, 65, 26], for example). In terms of the coordinates x, y, t given by (3.19), it
takes the form

(J−1Jt )t − (J−1Jx)x − (J−1Jy)y + [J−1Jx, J
−1Jt ] = 0, (3.31)

or in tensor notation (using the summation convention)

(ηµν + εµν)∂µ(J−1∂νJ ) = 0, (3.32)

where µ, ν = 0, 1, 2, (ηµν) = diag(1,−1,−1), and εµν is antisymmetric with ε01 = −ε10 =
1 and zero otherwise. We note that the bivector εµν breaks Lorentz invariance in 2 + 1
dimensions. Using the Lorentz invariant Levi-Civita pseudo-tensor and the constant unit
covector vα with components (0, 0, 1), it can be expressed as εµν = vαεαµν . Another integrable
equation is obtained if we choose vα to be timelike [27, 38, 78]. Equation (3.32) is Ward’s
(2+1)-dimensional generalization of the chiral (or sigma) model [27–32], see also [33–48, 50–
52, 68]. J can be consistently restricted to any Lie group, e.g. SL(N, R), SL(N, C), U(N)

or SU(N).

Remark. According to (3.28) we have J−1Jy = ϕx − ϕt and J−1Jt + J−1Jx = −ϕy , in terms
of the variables x, y, t given by (3.19). Hence

E = EWard − tr(J−1JtJ
−1Jx), (3.33)

where

EWard = − 1
2 tr((J−1Jt )

2 + (J−1Jx)
2 + (J−1Jy)

2) (3.34)

is the energy density of Ward’s chiral model. The difference between EWard and E is not a
local expression in terms of ϕ. The appendix attempts to further clarify the relation between
Ward’s chiral model and the pdCM hierarchy (and yet another version of it).

6



J. Phys. A: Math. Theor. 41 (2008) 265205 A Dimakis and F Müller-Hoissen

3.3. An associated bidifferential calculus

On the algebra A of m × m matrices with entries depending smoothly on x1, x2, . . . , we
introduce two linear maps d, d̄ by4

dψ =
∑
n�1

ψxn
dxn, d̄ψ =

∑
n�1

ψxn+1 dxn. (3.35)

By use of the graded Leibniz rule they extend to a (bi-)differential graded algebra and satisfy

d2 = d̄2 = dd̄ + d̄d = 0, (3.36)

and hence we have a bidifferential calculus. Dressing d̄ by setting

D̄ψ = d̄ψ − Aψ, (3.37)

with a 1-form A = ∑
n�1 An+1 dxn, we find that d, D̄ yields again a bidifferential calculus

(D̄2 = dD̄ + D̄d = 0), iff

dA = 0, d̄A = A ∧ A (3.38)

(see also [81]). These equations cover Ward’s chiral model hierarchy as well as its pseudodual,
which is the dispersionless ncpKP hierarchy. Indeed, solving the first equation by setting

A = dϕ, (3.39)

the second reproduces the pdCM hierarchy

d̄dϕ = dϕ ∧ dϕ. (3.40)

Alternatively, solving the second of equations (3.38) by setting

A = −J−1d̄J, (3.41)

we recover the hierarchy

d(J−1d̄J ) = 0 (3.42)

associated with Ward’s chiral model. The relation between both hierarchies is given by

J−1d̄J = −dϕ (3.43)

(which is (3.28)). This may be regarded as a ‘Miura transformation’. The linear system
associated with the bidifferential calculus is

D̄ψ − λ dψ = 0, (3.44)

with a parameter λ. Taking components of the differential forms, this reads(
∂xn+1 − An+1 − λ∂xn

)
ψ = 0 n = 1, 2, . . . . (3.45)

The integrability conditions now have the form[
∂xn+1 − An+1 − λ∂xn

, ∂xm+1 − Am+1 − λ∂xm

] = 0. (3.46)

Its multicomponent version (and with m, n ∈ Z) appeared in [82] (see (2.1), (2.2), and also
the references therein).

Nonlocal conserved currents are obtained in the following way [81]. Let dχ0 = 0. As a
consequence of the bidifferential calculus structure, there are χn, n = 1, 2, . . . , such that

jn+1 := D̄χn = −dχn+1 n = 0, 1, . . . (3.47)

4 We note that d̄ = R ◦ d where R is the linear left A-module map determined by R(dxn) = dxn−1 for n > 1, and
R(dx1) = 0. This makes contact with Frölicher–Nijenhuis theory [79], see also [80].
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iteratively determines χn, n = 1, 2, . . . . For example, starting with χ0 = I (the unit matrix),
we get j1 = D̄I = −dϕ (using (3.39)), hence χ1 = ϕ + a with da = 0, and thus also d̄a = 0.
In the second step we have j2 = D̄(ϕ + a) = d̄ϕ − dϕ (ϕ + a), and the construction of the next
current requires the integration of dχ2 = dϕ (ϕ + a) − d̄ϕ. The constant a actually turns out
to be redundant and should be set to zero.

A Bäcklund transformation is obtained from

(d − λ−1D̄)(I + λ−1B) = (I + λ−1B)(d − λ−1D̄′), D̄′ = d̄ − A′, (3.48)

with an operator B (see [83]). Expanding in powers of λ−1, we find

[d,B] = D̄ − D̄′, D̄B = BD̄′. (3.49)

Assuming B(ψ) = Bψ with a matrix B, this means

d(B) = A′ − A, d̄(B) = AB − BA′. (3.50)

Using (3.39) and solving the first of these equations by setting B = ϕ′ − ϕ − a with da = 0,
we obtain from the second

d̄(ϕ′ − ϕ) = dϕ (ϕ′ − ϕ − a) − (ϕ′ − ϕ − a) dϕ′, (3.51)

a Bäcklund transformation of the pdCM hierarchy. Alternatively, using (3.41) and solving the
second of equations (3.50) by setting B = −J−1KJ ′ with d̄K = 0, the first becomes

J ′−1d̄J ′ − J−1d̄J = d(J−1KJ ′), (3.52)

a Bäcklund transformation of the (modified) chiral model hierarchy (see also [84] for the case
of the chiral model on a two-dimensional spacetime).

If Bij leads from an ith to a j th solution, a permutability relation is given by

B12 + B24 = B13 + B34, B12B24 = B13B34 (3.53)

(see [83]). This determines algebraically a forth solution from a given (first) solution and two
Bäcklund descendants of it (with different parameters).

4. Towards exact solutions of the dispersionless ncpKP hierarchy

In this section, we start with a result that determines a large class of exact solutions of an
ncpKP hierarchy and use the scaling limit towards the dispersionless hierarchy in order to
obtain from it a corresponding result that determines exact solutions of the latter, which is a
pdCM hierarchy. Let us recall theorem 4.1 from [75].

Theorem 4.1. Let (A, ·) be the algebra of M × N matrices of functions of t with the product

A · B = AQB, (4.1)

where the ordinary matrix product is used on the right-hand side, and Q is a constant N × M

matrix. Let X̃ be an invertible N × N matrix and Ỹ ∈ A, such that X̃ , Ỹ solve the linear heat
hierarchy (i.e. ∂tn(X̃ ) = ∂n

t1
(X̃ ), n = 2, 3, . . . , and correspondingly for Ỹ) and satisfy

X̃t1 = RX̃ + QỸ, (4.2)

with a constant N × N matrix R. The pKP hierarchy in (A, ·) is then solved by

φ := ỸX̃−1. (4.3)

A functional representation of the heat hierarchy condition is

λ−1(X̃ − X̃−[λ]) = X̃t1 , (4.4)

8



J. Phys. A: Math. Theor. 41 (2008) 265205 A Dimakis and F Müller-Hoissen

and correspondingly for Ỹ (with an indeterminate λ). The theorem provides us with a
method to construct exact solutions of the ncpKP hierarchy in (A, ·). The idea is now to
take the dispersionless limit of (4.2) and (4.4). This should then result in conditions that
determine exact solutions of the pdCM hierarchy in (A, ·). However, assuming for X̃ , Ỹ
power series expansions in ε with nonvanishing terms of zeroth order, this results in too
restrictive conditions. The way out is to note that a ‘gauge transformation’

X̃ = XG, Ỹ = YG, (4.5)

with an N × N matrix G, leaves φ invariant. Choosing

G = exp(ξ(t, P )), ξ(t, P ) :=
∑
n�1

tnP
n, (4.6)

with a constant N × N matrix P, and using ξ(t, P )−[λ] = ξ(t, P ) + ln(IN − λP ) with the
N × N unit matrix IN , the heat hierarchy equations are mapped to

(X − X−[λ])(λ
−1 − P) = Xt1 , (Y − Y−[λ])(λ

−1 − P) = Yt1 , (4.7)

and (4.2) is converted into

Xt1 + XP = RX + QY. (4.8)

Assuming that

X (t, ε) = X(0)(T) + O(ε), Y(t, ε) = Y(0)(T) + O(ε), (4.9)

R = R(0) + O(ε), Q = Q(0) + O(ε), (4.10)

and P independent of ε, then we obtain from (4.8)

εX(0),T1 + X(0)P = R(0)X(0) + Q(0)Y(0) + O(ε), (4.11)

and from (4.7)

εD(λ)X(0) (λ−1 − P) = εX(0),T1 + O(ε2), (4.12)

together with the same equation for Y(0). After dividing the last equation by ε, these equations
have the dispersionless limits

R(0)X(0) + Q(0)Y(0) = X(0)P , (4.13)

respectively,

D(λ)X(0) (λ−1 − P) = X(0),T1 , D(λ)Y(0) (λ−1 − P) = Y(0),T1 , (4.14)

which is
1

n + 1
X(0),Tn+1 = 1

n
X(0),Tn

P ,
1

n + 1
Y(0),Tn+1 = 1

n
Y(0),Tn

P , (4.15)

(n = 1, 2, . . .), or in terms of the variables (3.10),

X(0),xn+1 = X(0),xn
P , Y(0),xn+1 = Y(0),xn

P , n = 1, 2, . . . . (4.16)

Under the stated conditions, we have an expansion

φ(t, ε) = �(x1, x2, . . .) + O(ε), (4.17)

which determines an exact solution � of the dispersionless limit of the ncpKP hierarchy, i.e.
the pdCM hierarchy (3.11). Proposition 5.1 in the following section confirms this directly, i.e.
without reference to the scaling limit procedure applied to the ncpKP hierarchy and the above
theorem.

9
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5. Exact solutions of the pdCM hierarchy

The main result of the preceding section will be formulated in the next proposition, and we
provide a direct proof. It will then be further elaborated and applied in order to construct some
classes of exact solutions of the (su(m)) pdCM hierarchy. In this section, symbols like X and
Q, for example, correspond to X(0) and Q(0) in the preceding sections. Since now we resolve
our considerations from the dispersionless limit procedure, there is no need to carry these
indices with us any more. In fact, this section can be accessed almost completely without
reference to the previous ones.

Proposition 5.1. Let X be an invertible N × N and Y an M × N matrix such that

RX + QY = XP (5.1)

and

Xxn+1 = Xx1P
n, Yxn+1 = Yx1P

n, n = 1, 2, . . . , (5.2)

with constant matrices P,R of size N × N , and Q of size N × M . Then

� = YX−1 (5.3)

solves the pdCM hierarchy

�xn+1,xm
− �xm+1,xn

= [
�xn

,�xm

]
Q

m, n = 1, 2, . . . (5.4)

(which is (3.11) with Q(0) replaced by Q).

Proof. Equation (5.2) is equivalent to

Xxn+1 = Xxn
P , Yxn+1 = Yxn

P , n = 1, 2, . . . .

In terms of the maps d, d̄, defined in section 3.3, this can be expressed as

d̄X = dXP, d̄Y = dYP.

Hence

(d�)XP + � dXP = dYP = d̄Y = (d̄�)X + � d̄X
= (d̄�)X + � dXP,

and thus5

d̄� = (d�)W,

where

W := XPX−1 = Q� + R,

using (5.1). Since d and d̄ satisfy (3.36), and since Q and R are constant, we obtain

d̄d� = −dd̄� = (d�) ∧ dW = (d�) ∧ Qd�,

which is the hierarchy (5.4). �

The next result shows how to obtain via proposition 5.1 solutions of the pdCM hierarchy
in the algebra of m × m matrices with the usual matrix product (i.e. without the modification
by a matrix Q different from the unit matrix). If tr(R) = tr(P ), these solutions have values in
sl(m, C).

5 We note that this equation can be written as d̄� − (d�)Q� = d� with � := �R, which is (3.8).

10



J. Phys. A: Math. Theor. 41 (2008) 265205 A Dimakis and F Müller-Hoissen

Proposition 5.2. Let U,V be N × m matrices and

ϕ = U †�V, Q = V U †, (5.5)

where � = YX−1 with X ,Y solving (5.1). Then

tr(ϕ) = tr(P ) − tr(R). (5.6)

Under the conditions of proposition 5.1, and if U and V are constant, ϕ solves the pdCM
hierarchy (3.14).

Proof. We have

tr(ϕ) = tr(U †YX−1V ) = tr(V U †YX−1) = tr(QYX−1).

Using (5.1), this can be rewritten as

tr(ϕ) = tr(XPX−1 − R),

which is (5.6). The last statement of the proposition is easily verified (see also section 3). �

It is helpful to extend (5.1) to

HZ = ZP, (5.7)

where

Z =
(
X
Y

)
, H =

(
R Q

S L

)
, (5.8)

with constant matrices L, S. Indeed, the upper component of (5.7) reproduces (5.1). But now
we have an additional equation, namely SX + LY = YP (which together with (5.1) implies
the algebraic Riccati equation S + L�−�R −�Q� = 0 for �). Although the latter appears
to impose an unnecessary restriction, it will be helpful in order to determine interesting classes
of exact solutions. The two equations (5.2) can be combined into

Zxn+1 = Zx1P
n n = 1, 2, . . . . (5.9)

Obviously, a transformation

Z = �Z ′, H = �H ′�−1, (5.10)

with a constant matrix

� =
(

�11 �12

�21 �22

)
, (5.11)

preserves the form of equations (5.7) and (5.9) with the same P. Consequently, if Z ′ solves
(5.7) and (5.9) with H ′, and hence �′ = Y ′X ′−1 solves the pdCM hierarchy with Q′, then Z
solves the corresponding equations with H, and according to proposition 5.1

� = YX−1 = (�21 + �22�
′)(�11 + �12�

′)−1 (5.12)

solves the pdCM hierarchy with Q.6 Such a transformation thus relates solutions of different
versions of the pdCM hierarchy, i.e. with different Q (which means different products). Since
Q and Q′ may have different rank, via (5.5) one obtains corresponding solutions of a pdCM
hierarchy in a different matrix algebra. An extreme case is Q′ = 0. Then the hierarchy (5.4)
reduces to the system of linear equations

�′
xmxn+1

− �′
xnxm+1

= 0 m, n = 1, 2, . . . . (5.13)

6 We note that the transformation (3.15) corresponds to the block-diagonal choice � = diag(g2, g
−1
1 ). Such a

transformation does not change a solution � in an essential way.
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The above observation now suggests to first construct a solution �′ of these linear equations,
and then use such a transformation (as a ‘dressing transformation’) to generate a solution of a
nonlinear hierarchy.

Proposition 5.3. Let P,L,R be constant N × N matrices. Let X ′,Y ′ solve (5.2) (which is
(5.9)) and (5.7) with7

H ′ =
(

R 0
0 L

)
. (5.14)

Then

� = Y ′ (X ′ − KY ′)−1 (5.15)

with any constant N ×M matrix K, provided that the inverse in (5.15) exists, solves the pdCM
hierarchy (5.4) with

Q = RK − KL. (5.16)

Proof. Choosing in (5.10) the transformation matrix

� =
(
IN −K

0 IM

)
,

where IN is the N × N unit matrix, we have

H = �H ′�−1 =
(

R RK − KL

0 L

)
,

and hence Q = RK − KL. Since Z = �Z ′ again satisfies (5.7) and (5.9), proposition 5.1
tells us that � given by (5.12), which is (5.15), solves (5.4) with Q given by (5.16). �

A special case of proposition 5.3 is formulated next. This will turn out to be particularly
useful in the following.

Corollary 5.1. Let P,K be constant N × N matrices, and X ′ an N × N matrix solution of

X ′
xn+1

= X ′
x1

P n n = 1, 2, . . . , (5.17)

such that

[P,X ′] = 0. (5.18)

Then

� = (X ′ − K)−1, (5.19)

provided that the inverse exists, solves the pdCM hierarchy with Q given by

Q = [P,K]. (5.20)

If moreover (5.5) holds, then ϕ solves the pdCM hierarchy (3.14) in sl(m, C).

Proof. We check that the assumptions of this corollary constitute a special case of those of
proposition 5.3. Equation (5.7) decomposes into

RX ′ = X ′P, LY ′ = Y ′P.

Choosing

R = L = P, Y ′ = IN,

7 If X ′ is invertible, then �′ = Y ′X ′−1 solves the linear hierarchy (5.13). This follows from proposition 5.1, since
Q′ = 0.
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this reduces to (5.18), and (5.2) reduces to (5.17). Since �′−1 = X ′, (5.15) becomes (5.19),
and (5.16) becomes (5.20). As a consequence of R = P and proposition 5.2, ϕ has vanishing
trace, hence takes values in sl(m, C). �

Example. Let us choose

P =
(

p1 0
0 p2

)
, X ′ =

(
f1 0
0 f2

)
, Q =

(
0 1
1 0

)
, (5.21)

with real constants p1 �= p2 and real functions fi . Then (5.18) holds and (5.17) requires
that the function fi depends on the variables x1, x2, . . . only through the combination ωi =∑

n�1 pn−1
i xn. Equation (5.20) is solved by

K =
(

0 (p1 − p2)
−1

(p2 − p1)
−1 0

)
. (5.22)

A diagonal part of K can be absorbed in (5.19) by redefinition of f1, f2. We obtain

� = 1

D

(
f2 (p2 − p1)

−1

(p1 − p2)
−1 f1

)
, (5.23)

where

D = f1f2 + (p1 − p2)
−2, (5.24)

and then the following solution of the sl(2, R) pdCM hierarchy:

ϕ = �Q = 1

D

(
(p2 − p1)

−1 f2

f1 (p1 − p2)
−1

)
. (5.25)

The corresponding conserved density E is given by

E = − 1 + p1p2

(f1f2 + (p1 − p2)−2)2

df1

dω1

df2

dω2
, (5.26)

which can take both signs, depending on the values of the parameters. Choosing

fi = exp(qiωi) + ci i = 1, 2, (5.27)

with non-negative constants ci and real constants qi �= 0, the solution is regular (for all
x1, x2, . . .). For positive ci, E is exponentially localized, a sort of soliton. The first derivatives
of the components of ϕ are not localized, however. If c1 or c2 tends to zero, it stretches into a
half-infinitely extended ‘line soliton’, the location of which is determined by q1ω1 +q2ω2 = 0.

As pointed out in section 3.1, the case where ϕ given by (5.5) has values in the Lie algebra
of a unitary group is distinguished by the fact that there is a non-negative ‘energy’ functional,
with density given by E defined in (3.24). We will therefore concentrate on this case in the
following. We further restrict our considerations to the case M = N , hence X ,Y,� are all
N × N matrices. Let U and V be constant N × m matrices. If � has the property

�† = T �T −1 (5.28)

with a constant invertible N × N matrix T which is anti-Hermitian, i.e. T † = −T , then by
setting

U = T V (5.29)

we achieve that ϕ = U †�V is anti-Hermitian, i.e.,

ϕ† = −ϕ. (5.30)

13
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As a consequence of these conditions, we have

ϕ = −V †T �V, (5.31)

and

Q = V U † = −V V †T , (5.32)

which has the property

Q† = −T QT −1. (5.33)

We note that V �→ V σ , with a constant unitary m×m matrix σ , leaves Q invariant and induces
a gauge transformation ϕ �→ σ †ϕσ . This can be used to reduce the freedom in the choice
of V .

In the following, we address exact solutions of the su(m) pdCM hierarchy by using the
recipe of corollary 5.1. Accordingly we should arrange that the solution X ′ of the linear
hierarchy (5.17) satisfies

X ′† = TX ′T −1. (5.34)

If also

K† = T KT −1, (5.35)

then � given by (5.19) satisfies the same relation, i.e. (5.28). As a further consequence, (5.31)
is then anti-Hermitian.

Together with (5.34), (5.18) implies [T −1P †T ,X ′] = 0, which is identically satisfied as
a consequence of (5.18) if P has the property

P † = T PT −1. (5.36)

We note that (5.20) is consistent with (5.33), (5.35) and (5.36). Basically the problem of
constructing solutions of (3.14) in su(m) (on the basis of corollary 5.1) is reduced to the
problem of satisfying the algebraic equation (5.20) with Q given by (5.32). We summarize
our results.

Proposition 5.4. Let (P,X ′, T , V ) be data consisting of a constant N × N matrix P, an
N ×N matrix X ′, which solves (5.17) and (5.18), a constant anti-Hermitian N ×N matrix T,
and a constant N × m matrix V . Furthermore, let (5.34) and (5.36) be satisfied, Q be defined
by (5.32), and suppose that a solution K of (5.20) and (5.35) exists. Then ϕ = −V †T �V ,
with � given by (5.19), is a solution of the pdCM hierarchy (3.14) in the Lie algebra su(m).

By application of proposition 5.4, some classes of exact solutions of the su(m) pdCM
hierarchy will be derived in the following subsections. Examples are worked out for the su(2)

case. Corresponding plots are restricted to the three variables entering the first hierarchy
equation, and we will always use the coordinates t, x, y related to the variables x1, x2, x3 by
the transformation (3.19). This is mainly done in order to ease a comparison with solutions of
Ward’s modified chiral model (cf section 3.2).

5.1. A class of solutions of the su(m) pdCM hierarchy

Assuming that P is diagonal, i.e.,

P = diag(p1, . . . , pN), (5.37)

with complex constants pi �= pj for i �= j , (5.18) requires X ′ to be diagonal. Writing

X ′ = diag(f1, . . . , fN), (5.38)
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where the entries are functions of x1, x2, . . . , (5.17) becomes

fj,xn
= pn−1

j fj,x1 j = 1, . . . , N, n = 1, 2, . . . . (5.39)

This is solved if fj is a holomorphic8 function of

ωj :=
∑
n�1

xnp
n−1
j (5.40)

(with the same j both for the function and its argument). In particular, fj depends on
the variables x1, x2, . . . only through the combination (5.40). Condition (5.34) with an
invertible anti-Hermitian matrix T imposes restrictions on the set of functions {fj }j=1,...,N , see
section 5.1.1.

According to corollary 5.1, � given by (5.19) solves the pdCM hierarchy with Q given
by (5.20), which implies Qii = 0, i = 1, . . . , N , and

Kij = Qij

pi − pj

= −
m∑

a=1

N∑
k=1

ViaV
∗
kaTkj

pi − pj

, i �= j, (5.41)

where we took (5.32) into account. Equation (5.19) shows that a diagonal part of K can be
absorbed by redefinition of the functions fj . Hence it is no restriction to assume that Kii = 0
for i = 1, . . . , N . Equation (5.35) is then satisfied as a consequence of (5.36). Now (5.19)
can be expressed as

(�−1)ij = fiδij +
N∑

k=1

m∑
a=1

ViaV
∗
kaTkj

pi − pj

, (5.42)

and ϕ = −V †T �V solves the su(m) pdCM hierarchy (3.14).

5.1.1. Some regular and localized solutions of the su(2) pdCM hierarchy. Choosing N even
and for T the following block-diagonal form:

T =

⎛
⎜⎜⎜⎜⎜⎝

0 −1
1 0

. . .

0 −1
1 0

⎞
⎟⎟⎟⎟⎟⎠ , (5.43)

conditions (5.34) and (5.36) read

f2(ω2) = f1(ω1)
∗, . . . , fN(ωN) = fN−1(ωN−1)

∗, (5.44)

p2 = p∗
1, . . . , pN = p∗

N−1. (5.45)

We also have ω2 = ω∗
1, . . . , ωN = ω∗

N−1.

Example 1. Let N = 2 and V = I2, which leads to Q = −T . Then we obtain

ϕ = β

1 + β2|f (ω)|2
( −i βf (ω)

−βf (ω)∗ i

)
, (5.46)

8 More generally, the function fj is allowed to have singularities in the complex ωj -plane, but we will not consider
such solutions in this work. See also, e.g., [44] in the case of Ward’s chiral model.
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Figure 1. Plots of E for stationary lump solutions of the su(2) pdCM equation, according to
example 1 of section 5.1.1. Here we chose p = i and f (ω) = ω/2 (left), f (ω) = ω2/2 (middle)
and f (ω) = (ω6 − 1)/8 (right).

where i = √−1, β = 2
(p), p = p1, and f = f1 is an arbitrary holomorphic function of
ω = ∑

n�1 pn−1xn. This solution is regular for all x1, x2, . . . . The corresponding ‘energy
density’ is given by

E = β4 (1 + |p|2)(1 + β2|f (ω)|2)−2

∣∣∣∣df

dω

∣∣∣∣
2

. (5.47)

Choosing for f a non-constant polynomial in ω, the solution is rational and localized, thus a
field configuration that is often called a ‘lump’. The shape of E depends on the degree of the
polynomial and in particular on its zeros.

Let x4, x5, . . . = 0 for the moment, so we concentrate on the first hierarchy equation.
Applying the coordinate transformation (3.19), we have

ω = 1
2 (t − x + 2py + p2(t + x)). (5.48)

We note that this becomes t-independent if p = ±i (i.e. β = ±2), in which case ω = −x ± iy,
and the solution ϕ is stationary. For f (ω) = qω + c, we obtain a simple lump. For example,
choosing p = i and f (ω) = ω/2, we have

E = 8

(1 + x2 + y2)2
, (5.49)

see figure 1. c �= 0 causes a displacement of the lump in the xy-plane.
For f (ω) = q (ω − c)n, n > 1, with a zero of nth order, E is bowl shaped. In particular,

if p = i and f (ω) = ω2/2, we have

E = 32 (x2 + y2)

(1 + (x2 + y2)2)2
, (5.50)

which is shown in figure 1 (second plot). The third plot in figure 1 displays another example.
Configurations with M lumps are obtained by choosing f as a product of (powers of)

factors ω − ci, i = 1, . . . ,M , with pairwise different complex constants ci .

Example 2. Let N = 4 and

V =
(
I2

I2

)
. (5.51)

Then ϕ has the following components:

ϕ11 = −ϕ22 = 1

D
(β1β2(ah∗

1h2 − a∗h1h
∗
2) − i[(β1 + β2)|b|4 + β1|ah2|2 + β2|ah1|2]),

ϕ12 = −ϕ∗
21 = 1

D
((b∗)2(aβ1h1 + a∗β2h2) + a|h1|2β2h2 + a∗β1h1|h2|2),

(5.52)
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Figure 2. Plots of E at t = −2, 0, 2 for a three lump solution of the su(2) pdCM equation, according
to example 2 of section 5.1.1. Here we chose p1 = i, p2 = 2i, and f1(ω1) = ω2

1 + 2, f2(ω2) =
ω2/4. Due to the special choice of p1, a pair of lumps is stationary. The positions of the latter are
given by the zeros of f1(ω1) = x2 − y2 + 2 − 2ixy, which are located at (x, y) = (0, ±√

2). The
position of the third lump corresponds to the zero of f2(ω2), which is given by (x, y) = (−3t/5, 0).
Choosing −2 instead of +2 in f1(ω1), all three lumps are located on the line y = 0, and the third
lump moves through both members of the pair (which then reside at x = ±√

2).

where

βi = 2
(pi), a = p1 − p∗
2, b = p1 − p2,

h1 = aβ1f1, h2 = a∗β2f2,

D = (|b|2 + |h1|2)(|b|2 + |h2|2) + β1β2|h1 − h2|2.
(5.53)

This solution is regular since D is positive (note that |b| > 0 since p1 �= p2, |b|2 � −β1β2, and
use |h1|2 +|h2|2 � |h1 −h2|2). Figure 2 shows an example. For generic parameter values, plots
of E show lumps with apparently trivial interaction. But if p1, p2 are close to the values ±i
(that correspond to the stationary single lump solutions), a non-trivial interaction is observed
in a compact space region, see figure 3. The scalar KP-I equation possesses solutions with the
same behaviour [85]. Moreover, also dipolar vortices (modons) of a barotropic equation [86]
and BPS monopoles [87] show such a behaviour in head-on collisions.

5.2. Another class of solutions of the su(m) pdCM hierarchy

Let N be even. We introduce the commuting matrices

XI =
(

fI h̃I

0 fI

)
, PI =

(
pI 1
0 pI

)
, (5.54)

with pairwise different complex constants pI , and functions fI , hI , I = 1, . . . , N/2, and
construct in terms of them the block-diagonal matrices

X ′ =

⎛
⎜⎜⎜⎝
X1

X2

. . .

XN/2

⎞
⎟⎟⎟⎠ , P =

⎛
⎜⎜⎜⎝

P1

P2

. . .

PN/2

⎞
⎟⎟⎟⎠ , (5.55)

which then obviously also commute. Now (5.17) becomes

fI,xn
= pn−1

I fI,x1 , h̃I,xn
= pn−1

I h̃I,x1 + (n − 1)pn−2fI,x1 , (5.56)

where I = 1, . . . , N/2 and n = 1, 2, . . . . Writing

h̃I = hI +
∂f

∂pI

, (5.57)
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Figure 3. Plots of E at t = −110,−100,−99,−90, 0, 90, 99, 100, 110 for the solution in
example 2 of section 5.1.1 with the data p1 = −19 i/20, p2 = 21 i/20, f1 = 2 iω1, f2 = 2 iω2.
Two lumps approach each other in the x-direction, merge, move away from one another in the
y-direction up to some maximal distance, return to each other and merge again, and then separate
in the x-direction.

the second equation is turned into hI,xn
= pn−1

I hI,x1 , by use of the first. Hence (5.17) is
satisfied if, for I = 1, . . . , N/2, fI and hI are holomorphic functions of

ωI =
∑
n�1

xnp
n−1
I (5.58)

(which is (5.40)), and in particular only depend on the variables x1, x2, . . . through this
combination. In order to explore the consequences of (5.20), we write K and Q as N/2 ×N/2
matrices, where the components KIJ , respectively QIJ , are 2 × 2 matrices.

Proposition 5.5. With the matrix P defined in (5.55), and any Q, the solution of (5.20) is given
by

KIJ = QIJ

pI − pJ

− [�2,QIJ ]

(pI − pJ )2
+

[�2, [�2,QIJ ]]

(pI − pJ )3
(5.59)

for I �= J , and

[�2,KJJ ] = QJJ J = 1, . . . , N/2, (5.60)

where

�2 =
(

0 1
0 0

)
. (5.61)
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Proof. We write PI = pII2 + �2. Then (5.20), restricted to components with I �= J , takes
the form (

id +
1

pI − pJ

ad�2

)
KIJ = QIJ

pI − pJ

,

where ad�K = [�,K]. Now (5.59) follows from(
id +

1

pI − pJ

ad�2

)−1

=
2∑

k=0

(−1)k(pI − pJ )−kadk
�2

,

since ad3
�2

= 0. The diagonal components of (5.20) are ad�2KJJ = QJJ , which is (5.60).
�

Remark. In view of (5.19), we may always assume that the two upper entries of KJJ vanish
(since non-vanishing entries can be absorbed into X ′). Using the matrix T given below in
(5.62), condition (5.35) then implies K

†
2J−1,2J−1 = τ2K2J,2J τ2, J = 1, . . . , N/2, and this

requires that KJJ can only have a nonzero entry in the lower left corner. As a consequence of
(5.60), QJJ is then diagonal and has vanishing trace.

A simple way of satisfying (5.60) is to choose V such that the diagonal blocks QJJ

vanish, and then set KJJ = 0, J = 1, . . . , N/2. This will be done in section 5.2.1.
It remains to satisfy the further anti-hermiticity conditions.

5.2.1. su(2) lumps with ‘anomalous’ scattering. Let N now be a multiple of 4. In analogy
with (5.43) we set

T =

⎛
⎜⎜⎜⎜⎜⎝

0 −τ2

τ2 0
. . .

0 −τ2

τ2 0

⎞
⎟⎟⎟⎟⎟⎠ where τ2 =

(
0 1
1 0

)
. (5.62)

Then (5.36) means P
†
1 = τ2P2τ2, . . . , P

†
N/2−1 = τ2PN/2τ2, which by use of (5.54) amounts to

p2J = p∗
2J−1 J = 1, . . . , N/2. (5.63)

Since we address the case m = 2, V has to be chosen as an N × 2 matrix, which we
subdivide into 2 × 2 blocks VI , I = 1, . . . , N/2. It follows that

QJJ =
{

−VJ V
†
J+1τ2

VJ V
†
J−1τ2

if J is
odd

even.
(5.64)

Thus, in order to achieve that QJJ = 0, we must arrange that

V2J−1V
†

2J = 0 J = 1, . . . , N/2. (5.65)

Then Q has the following structure:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 V1V
†

1 −V1V
†

4 V1V
†

3 · · ·
−V2V

†
2 0 −V2V

†
4 V2V

†
3 · · ·

−V3V
†

2 V3V
†

1 0 V3V
†

3 · · ·
−V4V

†
2 V4V

†
1 −V4V

†
4 0

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ2. (5.66)
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Example. The simplest case is N = 4. Excluding degenerate cases, the two blocks V1, V2

of V should both have rank 1. Hence V1 = v1u
†
1, V2 = v2u

†
2 with vectors uJ , vJ , J = 1, 2,

satisfying u
†
1u2 = 0. With a unitary transformation σ we can achieve that the lower component

of u1 vanishes. It follows that the upper component of u2 also vanishes. By a redefinition of
v1, v2, we obtain u

†
1 = (1, 0) and u

†
2 = (0, 1), and thus

Q12 = v1(τ2v1)
† =

(
v11v

∗
12 |v11|2

|v12|2 v12v
∗
11

)
,

Q21 = −v2(τ2v2)
† = −

(
v21v

∗
22 |v21|2

|v22|2 v22v
∗
21

)
,

(5.67)

with an obvious notation for the components of v1 and v2. We should exclude the case when
the expression (5.59) for K reduces to the first term on the right-hand side, since this leads
back to the solution of example 1 in section 5.1. This case is ruled out if v12 or v22 is different
from zero, which suggests to choose vJ = (0, 1), J = 1, 2, and thus

V1 =
(

0 0
1 0

)
, V2 =

(
0 0
0 1

)
. (5.68)

Then proposition 5.5 yields

K =
(

0 K12

−K21 0

)
, (5.69)

where

KIJ =
(

−(pI − pJ )−2 −2 (pI − pJ )−3

(pI − pJ )−1 (pI − pJ )−2

)
(5.70)

for I �= J . This in turn allows us to compute � and then also ϕ. The anti-hermiticity
conditions are then satisfied by setting

p2 = p∗
1, f2(ω2) = f1(ω1)

∗, h2(ω2) = h1(ω1)
∗, (5.71)

and we have ω := ω1 = ω∗
2. The result is

ϕ11 = −ϕ22 = − i

β7D
(2 + β4|f |2 + β4|f + iβh̃|2),

ϕ12 = −ϕ∗
21 = 1

β5D
(4 if − βh̃ − β5f 2h̃∗),

(5.72)

with β = 2
(p1), f = f1(ω), h̃ = h̃1 given by (5.57) in terms of f and h = h1(ω), and

D = β−8(1 + β4|f |2)2 + β−4|2f + iβh̃|2. (5.73)

The solution ϕ is thus regular for any choice of p1, with non-vanishing imaginary part, and the
holomorphic functions f, h. An example with h = 0 is shown in figure 4. More interesting
structures appear for non-constant h. Indeed, figure 5 shows two lumps that scatter at an
angle of 90◦. Choosing f linear in ω and h proportional to ωn, we observe a π/n scattering.
Figures 6 and 7 show examples of 60◦, respectively, 45◦ scattering.

Solutions with π/n scattering have also been found in Ward’s chiral model numerically
[35, 37], and analytically as certain limits of families of non-interacting lumps [32, 39, 43, 50].
Moreover, also the scalar KP equation (with positive dispersion, i.e. KP I) possesses solutions
with this behaviour [88–93]. In fact, π/n scattering in head-on collisions of soliton-like
objects is a familiar feature of many models (see [94–96], in particular). It occurs in dipolar
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Figure 4. Plots of E at t = −50, 0, 50 for the solution of section 5.2.1 with the data p1 = i
(i.e. β = 2), f = 2ω and h = 0.
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Figure 5. Plots of E at t = −5, 0, 5 for a 2-lump solution, exhibiting ‘scattering at right angle’,
see section 5.2.1. Here we chose p1 = i and f = −iω/32, h = −ω2/4.
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Figure 6. Plots of E at t = −500, 0, 500 for a 3-lump configuration exhibiting 60◦ scattering.
This is obtained from the solution of the example in section 5.2.1 with the data p1 = i and
f = −iω, h = ω3/8.
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Figure 7. Plots of E at t = −20, 0, 20 for a 4-lump configuration exhibiting 45◦ scattering.
This is obtained from the solution of the example in section 5.2.1 with the data p1 = i and
f = −iω, h = ω4/8.

vortex collisions [86, 97–99], in O(3) and CP
1 models [37, 100–106], in Skyrme models

[95, 106–109], for vortices of the Abelian Higgs (or Ginzburg–Landau) model [106, 110–119],
and BPS monopoles of a SU(m) Yang–Mills–Higgs system [87, 106, 120–122]. Another
integrable system that possesses solutions with this behaviour is the Davey–Stewartson II
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equation [123, 124] (which can actually be obtained by a multiscale expansion from the KP
equation [24, 125]).

The fact that lumps can interact either trivially or non-trivially (in Ward’s chiral model)
has been attributed to the status of the internal degrees of freedom in the solutions [32]. But
such an explanation appears not to be applicable to the case of the scalar KP equation. This
requires further clarification.

5.3. A further generalization

In the case of the solutions obtained in section 5.2, the matrix P consists of complex conjugate
pairs of 2 × 2 blocks of Jordan normal form. Of course, this can be generalized to NI × NI

Jordan blocks

PI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

pI 1 0 · · · 0

0 pI 1
. . .

...

...
. . .

. . .
. . .

...

...
. . . pI 1

0 · · · · · · 0 pI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.74)

and P can be chosen as a block-diagonal matrix with pairs of conjugate blocks of this form.
For each pair (PI , P

∗
I ) in P, the matrix T should then have a corresponding block

TI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

. .
.

−1
1

. .
.

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.75)

of size 2NI × 2NI , in order to achieve that (5.36) holds.

Example. Let

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p 1
0 p 1

p

p∗ 1
p∗ 1
0 p∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1

−1
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.76)

Then X ′ must have the form

X ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f h̃ g̃

0 f h̃

f

f ∗ h̃∗ g̃∗

f ∗ h̃∗

f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.77)
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Figure 8. Plots of E at t = −20, 0, 20 for the solution of the example in section 5.3 with the data
p = i, f = −iω, h = ω4/8 and g = 0. At t = 0 we have cut off an extremely large lump in the
centre.

and (5.2) becomes

fxn
= pn−1fx1 , h̃xn

= pn−1h̃x1 + (n − 1)pn−2fx1 ,

g̃xn
= pn−1g̃x1 + (n − 1)pn−1h̃x1 + 1

2 (n − 1)(n − 2)pn−3fx1 .
(5.78)

Writing

h̃ = h +
∂f

∂p
, g̃ = g +

∂h

∂p
+

1

2

∂2f

∂p2
, (5.79)

with functions f, g, h, it follows that these equations are satisfied if the latter are arbitrary
holomorphic functions of ω = ∑

n�1 pnxn. Furthermore, we find that

K =
(

0 K12

−K∗
12 0

)
with K12 =

⎛
⎝ i/β3 3/β4 −6i/β5

1/β2 −2i/β3 −3/β4

−i/β −1/β2 i/β3

⎞
⎠ (5.80)

and β = 2
(p), solves [P,K] = Q with Q = −V V †T . The resulting class of solutions is
regular since

det(X ′ − K) = β−18(1 + β6|f |2)3 + 2β−12(1 + β6|f |2)|3if − βh̃|2
+ β−6|2f 2 + (f + iβh̃)2 + β2f g̃|2 + β−12|6f + β(4ih̃ − βg̃)|2. (5.81)

Now we have three arbitrary holomorphic functions at our disposal, so this class exhibits quite
a variety of different structures. Figures 8 and 9 show some examples. If h = g = 0, the
typical behaviour is similar to that shown in figure 4.

Comparing the data that determine the class of solutions in the example in section 5.2.1,
based on a conjugate pair of 2 × 2 Jordan normal form matrices PI , with those of the last
example, which is based on a conjugate pair of 3 × 3 Jordan normal form matrices, there is an
obvious generalization to the case of conjugate pairs of larger Jordan normal form matrices
PI . We note in particular that proposition 5.5 can be generalized. Since the solutions turned
out to be automatically regular in the 2 × 2 and 3 × 3 case, it may well be that this holds in
general. But a proof of this conjecture is out of reach so far.

5.4. Superposing solutions

The data that determine solutions of the su(m) pdCM hierarchy on the basis of proposition 5.4
are given by a set of matrices (P,X ′, T , V ). Let two such sets be given, (Pi,X ′

i , Ti, Vi), i =
1, 2, with associated matrices Qi = −ViV

†
i Ti, Ki (as solutions of (5.20)), and �i given by
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Figure 9. Plots of E at t = −1000, 0, 1000 for the solution of the example in section 5.3 with the
data p = i, f = −iω/40, h = ω4/10 and g = 0. At t = 0 we have cut off the lumps beyond a
certain height.

(5.19). Pi,Xi , Ti are Ni × Ni matrices and Vi is an Ni × m matrix. We can combine them
into the larger matrices

P =
(

P1 0
0 P2

)
, X ′ =

(
X ′

1 0
0 X ′

2

)
,

T =
(

T1 0
0 T2

)
, V =

(
V1

V2

)
.

(5.82)

Obviously, (P,X ′, T , V ) again satisfies (5.17), (5.18), (5.34), (5.36) and T † = −T .
Equation (5.32) becomes

Q =
(

Q1 Q12

Q21 Q2

)
, Q12 = −V1V

†
2 T2, Q21 = −V2V

†
1 T1, (5.83)

and (5.20) with

K =
(

K1 K12

K21 K2

)
(5.84)

yields the equations

P1K12 − K12P2 = Q12, P2K21 − K21P1 = Q21. (5.85)

The off-diagonal blocks of K are a source of complexity and non-triviality of the resulting
superposition. Equation (5.35) then determines K21 in terms of K12 (or vice versa),

K21 = T −1
2 K

†
12T1. (5.86)

As a consequence, the second of equations (5.85) follows from the first. If we find a solution9

K12 of the remaining equation, then we obtain

� =
(

�1 �1K12�2

�2K21�1 �2

) (
A−1

1 0
0 A−1

2

)
, (5.87)

9 Choosing V1 and V2 such that V1V
†
2 = 0, we have Q12 = 0 and (5.85) is solved by K12 = 0. It follows that ϕ

is simply the sum of the solutions ϕ1 and ϕ2. But V1V
†
2 = 0 also implies that ϕ1ϕ2 = 0, hence both constituent

solutions ϕ1, ϕ2 must be degenerate, i.e. cannot have full rank.
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where

A1 = IN1 − K12�2K21�1, A2 = IN2 − K21�1K12�2, (5.88)

and ϕ given by (5.31) solves the su(m) pdCM hierarchy, provided that the inverses of A1 and
A2 exist. If the two matrices �i are regular (and thus also the corresponding solutions ϕi), then
� and thus also ϕ is regular if and only if det(A1) det(A2) �= 0 (for all values of x1, x2, . . .).
Since det(A1) = det(A2) by an application of Sylvester’s determinant theorem, this reduces
to the condition

det(A1) �= 0. (5.89)

We note also that det(A1) is real since

det(A1)
∗ = det

(
A

†
1

) = det
(
IN1 − K

†
21�

†
2K

†
12�

†
1

)
= det

(
IN1 − T1K12�2K21�1T

−1
1

) = det(A1). (5.90)

Example. We choose

P1 =

⎛
⎜⎜⎝

p1 1
0 p1

p∗
1 1

0 p∗
1

⎞
⎟⎟⎠, X ′

1 =

⎛
⎜⎜⎝

f1 h1 + ∂f1/∂p1

0 f1

f ∗
1 h∗

1 + (∂f1/∂p1)
∗

0 f ∗
1

⎞
⎟⎟⎠,

T1 =

⎛
⎜⎜⎝

−1
−1

1
1

⎞
⎟⎟⎠, V1 =

⎛
⎜⎜⎝

0 0
1 0
0 0
0 1

⎞
⎟⎟⎠,

(5.91)

where f1, h1 are arbitrary holomorphic functions of ω1 (with ω1 defined in (5.40)), and

P2 =
(

p2 0
0 p∗

2

)
, X ′

2 =
(

f2 0
0 f ∗

2

)
, T2 =

(
0 −1
1 0

)
, V2 =

(
1 0
0 1

)
, (5.92)

with an arbitrary holomorphic function f2 of ω2. Thus we superpose data corresponding to a
regular solution of the kind treated in the example in section 5.2.1 and data corresponding to
a regular solution as given in example 1 of section 5.1. In the following we assume that

p1 �= p2, p1 �= p∗
2 . (5.93)

Together with the conditions pi �= p∗
i , i = 1, 2, which the data of the components have to

satisfy, this means that the constants pi and their complex conjugates are pairwise different.
The second condition in (5.93) is in fact needed for the matrix K to exist. K has the
form (5.84), where K1 is given by the 4 × 4 matrix K in (5.69) with the pair (p1, p

∗
1).

Furthermore,

K2 =
(

0 1
p2−p∗

2

1
p2−p∗

2
0

)
, K21 =

(
0 0 − 1

p∗
1−p2

1
(p∗

1−p2)2

1
p1−p∗

2
− 1

(p1−p∗
2 )2 0 0

)
, (5.94)
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Figure 10. Plots of E at t = −2, 0, 2 for a superposition of a 2-lump configuration, with ‘anomalous
scattering’, and a single lump (which is at the top of the left plot and at the bottom of the right plot),
according to the example of section 5.4. Here we chose p1 = i, p2 = −3i/8, f1 = −iω1/32, f2 =
24ω2 and h1 = −ω2/4.

and K12 is then determined by (5.86). With some efforts the expression for det(A1) can be
brought into the form

det(A1) = |a|−8(1 + β2
2 |f2|2

)−1(|w|2 +
(
1 + β4

1 |f1|2
)2)−2[(|a|4[|w|2 +

(
1 + β4

1 |f1|2
)2]

−β1β2
[|a|2(1 + β4

1 |f1|2
)

+ |b|2 + |aw + ib∗β2
1f1|2

])2

+
∣∣(a∗)4(|w|2 +

(
1 + β4

1 |f1|2
)2)

β2f2

+ β1β2
(
b2w + (a∗)2β4

1f 2
1 w∗ − 2ia∗bβ2

1f1
(
1 + β4

1 |f1|2
))∣∣2]

, (5.95)

where

βi = 2
(pi), a = p1 − p∗
2, b = p1 − p2, w = β3

1h1 − 2iβ2
1f1. (5.96)

The regularity condition (5.89) turns out to be automatically satisfied. This is seen as follows.
First we note that

|a|4 = |b|4 + β1β2 (|a|2 + |b|2) > β1β2 (|a|2 + |b|2), (5.97)

as a consequence of the first of the inequalities (5.93), and thus

|a|4 (
1 + β4

1 |f1|2
)2

> β1β2 (|a|2 + |b|2)(1 + β4
1 |f1|2

)
. (5.98)

Using |a|2 > β1β2, this leads to

|a|4 (|w|2 +
(
1 + β4

1 |f1|2
)2)

> β1β2
(|a|2(1 + β4

1 |f1|2
)

+ |b|2 + |aw|2 + |ib∗β2
1f1|2

)
� β1β2

(|a|2(1 + β4
1 |f1|2

)
+ |b|2 + |aw + ib∗β2

1f1|2
)
, (5.99)

which implies det(A1) > 0.
Figure 10 shows plots of E at consecutive times, for a special choice of the data.

In the last example, the regularity of the superposition turned out to be a consequence of
the ‘regular data’ we started with. But this example also demonstrates that it is quite difficult
in general to evaluate the regularity condition (5.89). We note that also the cases treated in
sections 5.1.1 and 5.2.1 may be regarded as special cases of ‘superpositions’ as formulated
above. In particular, example 2 of section 5.1.1 provides us with another example where the
superposition of regular data turned out to be regular again. It is unlikely that this is a special
feature of our particular examples. But in order to tackle a general proof, we probably need
different methods.
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6. Conclusions

We summarize the relations between integrable systems and their hierarchies considered in
this work in the following diagram:

mKPQ WardQ

pKPQ pdCMQ

scalar pKP su(m) pdCM

dispersionless limit

dispersionless limit

rank(Q) = 1 reality cond. rank(Q) = m su(m) cond.

Miura transf. pseudo-duality

Here pKPQ and pdCMQ stand, respectively, for the pKP and pdCM hierarchy in the
matrix algebra GL(M × N, C) with product modified by a constant matrix Q (see (4.1)).
pdCMQ is related by pseudoduality (see (3.28)) to the hierarchy WardQ of Ward’s model with
dependent variable in GL(M ×N, C) (and product modified by Q). If rank(Q) = 1, solutions
of pKPQ are mapped to solutions of the scalar pKP hierarchy, an additional condition ensures
that the resulting solution is real. Analogously, if rank(Q) = m and an su(m) condition holds,
solutions of the pdCMQ hierarchy are mapped to solutions of the su(m) pdCM hierarchy
(which is pseudodual to the hierarchy associated with Ward’s modified SU(m) chiral model).
Concerning the Miura transformation between the (matrix) pKP hierarchy and the modified
KP (mKP) hierarchy, and its dispersionless limit (see the dashed arrows in the diagram), see
[76]. The relations provided by the dispersionless scaling limits in the diagram have actually
been anticipated in [76] (see the remark in section 4 therein).

In the present work, we demonstrated how the dispersionless scaling can be used to
transfer a method of constructing exact solutions from the (matrix or ‘noncommutative’) pKP
hierarchy to the pdCM hierarchy. Indeed, proposition 5.1 is an analogue of theorem 4.1 in
[75] (which we recalled as theorem 4.1). We showed that large classes of exact solutions of
the pdCM hierarchy can be obtained with its help. In particular, we presented examples of
various multiple lump configurations of the su(m) pdCM. The general result formulated in
proposition 5.1 is a source of even more classes of exact solutions.

Our method to generate exact solutions of the su(m) pdCM hierarchy is based on quite
simple formulae and quickly produces interesting solutions (like lumps with ‘anomalous
scattering’). But a more systematic treatment, in particular of multi-lump solutions, requires
deeper methods (of matrix calculus), and further insights are needed as to how the a priori
given plethora of parameters can efficiently be reduced. It would also be of interest to compare
this method with an inverse scattering approach.

Solutions of the su(m) pdCM hierarchy can also be obtained from solutions of Ward’s
chiral model hierarchy by integrating (3.28) (or equivalently (3.43)). In any case, one should
expect an analogous structure of localized solutions, and this indeed turns out to be the case
in examples. A deviation in the corresponding plots is caused by the fact that the ‘energy’
expression for the pdCM differs from the energy of the Ward model by a term that causes
an asymmetry in the x-direction, see the remark in section 3.2 and also the appendix10. Our
method to generate solutions of the pdCM hierarchy seems to be quite different from the
methods that were used to construct solutions of Ward’s model. In particular, in the latter
model solutions with ‘anomalous scattering’ have been obtained by taking suitable limits of

10 We note that x and y have to be exchanged for comparing our formulae with those in the literature on the Ward
model.
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families of non-interacting lump solutions. In our approach, corresponding solutions of the
pdCM hierarchy are directly given by matrix data involving Jordan blocks. Moreover, we have
seen that even the simple multiple lump solutions of section 5.1.1 can exhibit an anomalous
behaviour within some compact space region (see figure 3), whereas asymptotically (i.e.
compared at large enough negative and positive times) no deflection is observed. We noted
that this has a KP-I counterpart [85] and also analogues in some other systems [86, 87].

The fact that the dispersionless scaling limit of matrix pKP (respectively mKP) is a simple
reduction of a potential version of the (four-dimensional) self-dual Yang–Mills equation raises
the question whether there is a (four-dimensional) integrable system that has the full self-
dual Yang–Mills equation as a dispersionless limit and that admits a reduction to matrix KP
(respectively mKP).

Appendix A. The ‘anti-pdCM hierarchy’

Writing (3.42) as Jd(J−1d̄J )J−1 = 0, using the Leibniz rule and (3.36), we obtain the
equivalent form

d̄((dJ )J−1) = 0 (A.1)

of the hierarchy associated with Ward’s chiral model, where d and d̄ exchanged their roles.
This is integrated by introducing a potential ϕ̃ such that

(dJ )J−1 = d̄ϕ̃. (A.2)

Rewriting the last equation in the form dJ = (d̄ϕ̃)J , we obtain the integrability condition

dd̄ϕ̃ = d̄ϕ̃ ∧ d̄ϕ̃. (A.3)

In components, this becomes

ϕ̃xnxm+1 − ϕ̃xmxn+1 = [
ϕ̃xn+1 , ϕ̃xm+1

]
, m, n = 1, 2, . . . , (A.4)

which we refer to as the anti-pdCM hierarchy. For m = 1 and n = 2 we have

ϕ̃x1x3 − ϕ̃x2x2 = [
ϕ̃x2 , ϕ̃x3

]
. (A.5)

In terms of the coordinates given by (3.19), it takes the form

ϕ̃tt − ϕ̃xx − ϕ̃yy + [ϕ̃t + ϕ̃x, ϕ̃y] = 0. (A.6)

Since this equation is obtained from (3.20) by x �→ −x, so are its Lagrangian L̃ and energy–
momentum tensor T̃ µ

ν from those in section 3.1. For ϕ̃ in su(m),

Ẽ = T̃ 0
0 + T̃ 0

1 = − 1
2 tr

(
(ϕ̃t + ϕ̃x)

2 + ϕ̃y
2
)

(A.7)

is then a non-negative conserved density.
Associated with any solution J of Ward’s chiral model hierarchy via (3.43) and (A.2),

there are solutions ϕ and ϕ̃ of the pdCM hierarchy and the anti-pdCM hierarchy, respectively.
Using JtJ

−1 − JxJ
−1 = ϕ̃y and JyJ

−1 = ϕ̃t + ϕ̃x , which follow from (A.2), we find that

Ẽ = EWard + tr(J−1JtJ
−1Jx). (A.8)

Combining this with (3.33), leads to

EWard = 1
2 (E + Ẽ). (A.9)

The next result is an analogue of corollary 5.1 and leads to a class of solutions of the
anti-pdCM hierarchy.
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Proposition A1. Let (P,K,X ′) be data that determine via corollary 5.1 a solution � (given
by (5.19)) of the pdCM hierarchy with Q = [P,K]. If P is invertible (as in all our examples
in section 5), then � also solves

dd̄� = d̄� ∧ Q̃d̄� (A.10)

with Q̃ = P −1QP −1.

Proof. As a consequence of (5.17), X := X ′ − K solves

dX = d̄XP −1,

and consequently � = X−1 satisfies

d� = (d̄�)W−1, W = XPX−1.

Now we note that (5.18) and (5.20) imply [P −1,X ] = [K,P −1] = P −1QP −1. Hence

W−1 = P −1(X + QP −1)X−1 = P −1 + P −1QP −1�,

and we obtain

dd̄� = −d̄d� = (d̄�) ∧ P −1QP −1 d̄�. �

If moreover the assumptions of proposition 5.4 are satisfied, then

P −1QP −1 = −P −1V V †T P −1 = −P −1V (P −1V )†T , (A.11)

and (A.10) implies that

ϕ̃ = −(P −1V )†T �P −1V (A.12)

solves the anti-Hermitian anti-pdCM hierarchy (A.3). The data (P,X ′, T , V ) therefore
determine a solution (5.31) of the anti-Hermitian pdCM hierarchy and also a solution (A.12)
of the anti-Hermitian anti-pdCM hierarchy.

Although elaboration of examples suggests that the pair (ϕ, ϕ̃) determined by the data
(P,X ′, T , V ) indeed belongs to the same solution J of Ward’s chiral model hierarchy (via
(3.43) and (A.2)), we were not able so far to prove this.
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Painlevé I and II Phys. Lett. A 303 253–64

[16] Konopelchenko B G and Martinez Alonso L 2002 Dispersionless scalar integrable hierarchies, Whitham
hierarchy, and the quasiclassical ∂̄-dressing method J. Math. Phys. 43 3807–23

[17] Konopelchenko B G and Martinez Alonso L 2002 Nonlinear dynamics on the plane and integrable hierarchies
of infinitesimal deformations Stud. Appl. Math. 109 313–36
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[98] van Heijst G J F and Flór J B 1989 Dipole formation and collisions in a stratified fluid Nature 340 212–5
[99] Voropayev S I and Afanasyev Ya D 1992 Two-dimensional vortex-dipole interactions in a stratified fluid J.

Fluid Mech. 236 665–89
[100] Ward R S 1985 Slowly-moving lumps in the CP 1 model in (2 + 1) dimensions Phys. Lett. B 158 424–8
[101] Leese R 1990 Low-energy scattering of solitins in the CP 1 model Nucl. Phys. B 344 33–72
[102] Leese R A 1991 Q-lumps and their interactions Nucl. Phys. B 366 283–311
[103] Zakrzewski W J 1991 Soliton-like scattering in the O(3) σ -model in (2+1) dimensions Nonlinearity 4 429–75
[104] Cova R J and Zakrzewski W J 1997 Soliton scattering in the O(3) model on a torus Nonlinearity 10 1305–17
[105] Speight J M 1998 Lump dynamics in the CP 1 model on the torus Commun. Math. Phys. 194 513–39
[106] Manton N and Sutcliffe P 2004 Topological Solitons (Cambridge: Cambridge University Press)
[107] Manton N S 1987 Is the B = 2 Skyrmion axially symmetric? Phys. Lett. B 192 177–9
[108] Leese R A, Peyrard M and Zakrzewski W J 1990 Soliton scatterings in some relativistic models in (2 + 1)

dimensions Nonlinearity 3 773–807
[109] Sutcliffe P M 1991 The interaction of Skyrme-like lumps in (2 + 1) dimensions Nonlinearity 4 1109–21
[110] Moriarty K J M, Myers E and Rebbi C 1988 Dynamical interactions of cosmic strings and flux vortices in

superconductors Phys. Lett. B 207 411–8
[111] Ruback P J 1988 Vortex string motion in the Abelian Higgs model Nucl. Phys. B 296 669–78

32

http://dx.doi.org/10.1007/BF01200109
http://dx.doi.org/10.1007/BF00420705
http://dx.doi.org/10.1088/0305-4470/33/48/313
http://dx.doi.org/10.1088/0305-4470/33/5/311
http://dx.doi.org/10.1007/BF02096754
http://dx.doi.org/10.1088/0305-4470/34/43/306
http://dx.doi.org/10.1016/0370-2693(80)91003-5
http://dx.doi.org/10.1016/j.wavemoti.2003.12.017
http://dx.doi.org/10.1080/03091928208208956
http://dx.doi.org/10.1016/0550-3213(86)90624-3
http://dx.doi.org/10.1063/1.530711
http://dx.doi.org/10.1103/PhysRevE.51.3183
http://dx.doi.org/10.1103/PhysRevLett.78.570
http://dx.doi.org/10.1007/s002200050716
http://dx.doi.org/10.1016/S0375-9601(00)00020-7
http://dx.doi.org/10.1103/PhysRevD.43.4029
http://dx.doi.org/10.1016/0375-9601(93)90505-T
http://dx.doi.org/10.1016/0370-2693(95)00470-6
http://dx.doi.org/10.1017/S002211208800182X
http://dx.doi.org/10.1038/340212a0
http://dx.doi.org/10.1017/S0022112092001575
http://dx.doi.org/10.1016/0370-2693(85)90445-9
http://dx.doi.org/10.1016/0550-3213(90)90684-6
http://dx.doi.org/10.1016/0550-3213(91)90004-H
http://dx.doi.org/10.1088/0951-7715/4/2/011
http://dx.doi.org/10.1088/0951-7715/10/5/015
http://dx.doi.org/10.1007/s002200050367
http://dx.doi.org/10.1016/0370-2693(87)91162-2
http://dx.doi.org/10.1088/0951-7715/3/3/011
http://dx.doi.org/10.1088/0951-7715/4/4/004
http://dx.doi.org/10.1016/0370-2693(88)90674-0
http://dx.doi.org/10.1016/0550-3213(88)90038-7


J. Phys. A: Math. Theor. 41 (2008) 265205 A Dimakis and F Müller-Hoissen

[112] Shellard E P S and Ruback P J 1988 Vortex scattering in two dimensions Phys. Lett. B 209 262–70
[113] Myers E, Rebbi C and Strilka R 1992 Study of the interaction and scattering of vortices in the Abelian Higgs

(or Ginzburg–Landau) model Phys. Rev. D 45 1355–64
[114] Strachan I 1992 Low-velocity scattering of vortices in a modified Abelian Higgs model J. Math. Phys.

33 102–10
[115] Samols T M 1992 Vortex scattering Commun. Math. Phys. 145 149–79
[116] Manton N S 1991 Vortices and anyons Phys. Rev. Lett. 67 1462–3
[117] Burzlaff J and McCarthy P 1991 A study of a 90◦ vortex–vortex scattering process J. Math. Phys. 32 3376–80
[118] Abdelwahid F and Burzlaff J 1994 Existence theorems for 90◦ vortex–vortex scattering J. Math. Phys.

35 4651–60
[119] Arthur K and Burzlaff J 1996 Existence theorems for π/n vortex scattering Lett. Math. Phys. 36 311–8
[120] Atiyah M F and Hitchin N J 1985 Low energy scattering of non-Abelian monopoles Phys. Lett. A 107 21–5
[121] Atiyah M F, Hitchin N J, Stuart J T and Tabor M 1985 Low-energy scattering of non-Abelian magnetic

monopoles Phil. Trans. R. Soc. A 315 459–69
[122] Dancer A and Leese R 1993 Dynamics of SU(3) monopoles Proc. R. Soc. Lond. A 440 421–30
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